[time 307] rethinking relativity part II


Stephen P. King (stephenk1@home.com)
Tue, 11 May 1999 14:35:52 -0400


http://www.delphi.com/n/mb/message.asp?webtag=tomshardware&msg=32231.2
Messages

Please visit our Sponsor
Einstein was WRONG ?!?!?!?!??
  Previous |  Next 
   From:  Barnstormer (DPENNYBAKER) Apr-29 9:47 am  
   To:  Barnstormer (DPENNYBAKER)
  
#32231.2, in reply to 32231.12 of 175  
 
Part Two:

Dissent from special relativity is small and scattered. But it is there, and it is growing. Van Flandern's article is only the latest manifestation. In 1987, Petr Beckmann, who taught at the University of Colorado, published Einstein Plus Two, pointing out that the observations that led to relativity can be more simply reinterpreted in a way that preserves universal time. The journal he founded, Galilean Electrodynamics, was taken over by Howard Hayden of the University of Connecticut (Physics), and is now edited by Cynthia Kolb Whitney of the Electro-Optics Technology Center at Tufts. Hayden held colloquia on Beckmann's ideas at several New England universities, but could find no physicist who even tried to put up an argument.

A brief note on Einstein's most famous contribution to physics--the formula that everyone knows. When they hear that heresy is in the air, some people come to the defense of relativity with this question: "Atom bombs work, don't they?" They reason as follows: The equation E = mc2 was discovered as a byproduct of Einstein's (special) theory of relativity. (True.) Relativity, they conclude, is indispensable to our understanding of the way the world works. But that does not follow. Alternative derivations of the famous equation dispense with relativity. One such was provided by Einstein himself in 1946. And it is simpler than the relativistic rigmarole. But few Einstein books or biographies mention the alternative. They admire complexity, and cling to it.

Consider Clifford M. Will of Washington University, a leading proponent of relativity today. "It is difficult to imagine life without special relativity," he says in Was Einstein Right? "Just think of all the phenomena or features of our world in which special relativity plays a role. Atomic energy, both the explosive and the controlled kind. The famous equation E=mc2 tells how mass can be converted into extraordinary amounts of energy." Note the misleading predicate, "plays a role." He knows that the stronger claim, "is indispensable," would be pounced on as inaccurate.

Is there an alternative way of looking at all the facts that supposedly would be orphaned without relativity? Is there a simpler way? A criterion of simplicity has frequently been used as a court of appeal in deciding between theories. If it is made complex enough, the Ptolemaic system can predict planetary positions correctly. But the Sun-centered system is much simpler, and ultimately we prefer it for that reason.

Tom Van Flandern says the problem is that the Einstein experts who have grown accustomed to "Minkowski diagrams and real relativistic thinking" find the alternative of universal time and "Galilean space" actually more puzzling than their own mathematical ingenuities. Once relativists have been thoroughly trained, he says, it's as difficult for them to rethink the subject in classical terms as it is for laymen to grasp time dilation and space contraction. For laymen, however, and for those physicists who have not specialized in relativity, which is to say the vast majority of physicists, there's no doubt that the Galilean way is far simpler than the Einsteinian.

Special relativity was first proposed as a way of sidestepping the great difficulty that arose in physics as a result of the Michelson-Morley experiment (1887). Clerk Maxwell had shown that light and radio waves share the same electromagnetic spectrum, differing only in wave length. Sea waves require water, sound waves air, so, it was argued, electromagnetic waves must have their own medium to travel in. It was called the ether. "There can be no doubt that the interplanetary and interstellar spaces are not empty," Maxwell wrote, "but are occupied by a material substance or body, which is certainly the largest, and probably the most uniform body of which we have any knowledge." As today's dissidents see things, it was Maxwell's assumption of uniformity that was misleading.

The experiment of Michelson and Morley tried to detect this ether. Since the Earth in its orbital motion must plow through it, an "ether wind" should be detectable, just as a breeze can be felt outside the window of a moving car. Despite repeated attempts, however, no ethereal breeze could be felt. A pattern of interference fringes was supposed to shift when Michelson's instrument was rotated. But there was no fringe shift.

Einstein explained this result in radical fashion. There is no need of an ether, he said. And there was no fringe shift because the speed of an approaching light wave is unaffected by the observer's motion. But if the speed of light always remains the same, time itself would have to slow down, and space contract to just the amount needed to ensure that the one divided by the other--space divided by time--always gave the same value: the unvarying speed of light. The formula that achieved this result was quite simple, and mathematically everything worked out nicely and agreed with observation.

The skeptical, meanwhile, were placated with this formula: "I know it seems odd that time slows down and space contracts when things move, but don't worry, a measurable effect only occurs at high velocities--much higher than anything we find in everyday life. So for all practical purposes we can go on thinking in the same old way." (Meanwhile, space and time have been subordinated to velocity. Get used to it.)

Now we come to some modern experimental findings. Today we have very accurate clocks, accurate to a billionth of a second a day. The tiny differentials predicted by Einstein are now measurable. And the interesting thing is this: Experiments have shown that atomic clocks really do slow down when they move, and atomic particles really do live longer. Does this mean that time itself slows down? Or is there a simpler explanation?

The dissident physicists I have mentioned disagree about various things, but they are beginning to unite behind this proposition: There really is an ether, in which electromagnetic waves travel, but it is not the all-encompassing, uniform ether proposed by Maxwell. Instead, it corresponds to the gravitational field that all celestial bodies carry about with them. Close to the surface (of sun, planet, or star) the field, or ether, is relatively more dense. As you move out into space it becomes more attenuated. Beckmann's Einstein Plus Two introduces this hypothesis, I believe for the first time, and he told me it was first suggested to him in the 1950's by one of his graduate students, Jiri Pokorny, at the Institute of Radio Engineering and Electronics in Prague. Pokorny later joined the department of physics at Prague's Charles University, and today is retired.

I believe that all the facts that seem to require special or general relativity can be more simply explained by assuming an ether that corresponds to the local gravitational field. Michelson found no "ether wind," or fringe shift, because of course the Earth's gravitational field moves forward with the Earth. As for the bending of starlight near the Sun, the confirmation of general relativity that made Einstein world-famous, it is easily explained given a non-uniform light medium. It is a well known law of physics that wave fronts do change direction when they enter ...[Message truncated]

Send above Message via EmailE-mail this
  Reply to above Message  
 
 

Show more messages in this discussion  


1 2 3 4 5 ... 172 173 174 175

Want more functionality? Switch to Advanced View


Home  |  Search  |  Free Forum  |  Free Homepage  |  Advertising  |  About Delphi  |  Jobs  |  Help
Copyright © 1999 Delphi Internet Services Corporation. All rights reserved. Privacy Policy.



This archive was generated by hypermail 2.0b3 on Sun Oct 17 1999 - 22:10:31 JST